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overview

� warning – social and reproductive / 
perinatal epidemiologist 

� concepts –  
– why context matters 
– multilevel models – terminology 

� applications –  
– issues specific to nested data 
– different types of multilevel models 

� interpretations –  



concepts –  
why context matters 

� empirically, individual outcomes can’t be 
explained exclusively by individual-level 
exposures 

� persistent contextual effects are 
observed in all (?) outcomes across 
populations 

� exposures are structured; distributions 
are differential 
 



concepts –  
types of non-individual-level data 

� compositional data 
– properties of individuals 
– aggregation of individual-level variables—such as 

census data 
� contextual data 

– properties of places 
– integral variables; no individual-level analogs—

services, resources 

� directly observed data (can be combination) 
– survey direct observation of the built 

environment such as “walkability” or broken 
windows 



Neighborhood A Neighborhood B 

individual 
– level 

protection 

neighborhood 
- level 

protection 

 concepts –  
partitioning variance 



concepts –  
definition and synonyms 

� ml modeling: a method that allows researchers 
to investigate the effect of group or place 
characteristics on individual outcomes while 
accounting for non-independence of 
observations 

� synonyms: different models: 
– multilevel models - fixed effects 
– contextual models - random effects 
– hierarchical analysis - marginal models (e.g., GEE) 

� longitudinal (panel) data, repeated measures 
designs use ml methods as well 



concepts –  
when are observations dependent? 

� dependence arises when data are 
collected by cluster / aggregating unit 
– children within schools 
– patients within hospitals 
– pregnant women within neighborhoods 
– cholesterol levels within a patient 

� why care about clustered data? 
– two children / observations within one school 

are probably more alike than two children / 
observations drawn from different schools 

– knowing one outcome informs your 
understanding about another outcome (i.e., 
statistical dependence) 



� standard regression models are mis-
specified for clustered data 
– yi = �0 + �1xi + εi;   ε ~ N(0,σ2) i.i.d. 
– more on this 

� hierarchical models out-perform 
unbiased models (result in lower mean 
squared errors) 
– more on this 

concepts –  
why use multilevel models? 



concepts summary –  
why use multilevel models? 

� outcomes may be clustered by some unit 
of aggregation (contextual unit) 

� individuals within contexts may be similar 
in ways that are unmeasured 

� to take into account clustering / non-
independence of observations 

� to partition the observed variability into 
within-context and between- context 
variables 

� to allow for different types of policy or 
interventions to change population values 
/ distributions 



concepts –  
how to tell if you need ml models 

� reality 1: anytime you have data collected 
from some aggregate unit / clusters, you 
will have to use ml models 

� reality 2: calculating an intraclass 
correlation coefficient will quantify your 
clustering (in absence of running a ml 
model) 

� reality 3: even if your ‘clustered data’ 
aren’t empirically clustered, article and 
grant reviewers will demand it 



application –  
linear and logistic regression 

� linear model review: 
 
 
 

� logistic model review: 

Yi = β0 + β1X1i + β2X2i…+ εi 

β0 = intercept β1 = slope for exposure X1 
β2 = slope for covariate X2… 
εi = error term (assumed normal and i.i.d.) 

ln [P(yi) / (1-P((yi))] = α + β1X1i + β2X2i… 
α = constant β1 = slope for exposure X1 
β2 = slope for covariate X2 



application –  
model assumptions 

� baseline outcome means (mean values 
when exposure and covariates = 0) 
differs only due to variability between 
subjects 

� individuals, and their errors, 
independent and identically distributed 
(i.i.d. assumption) 

� all non-specified variables (e.g., area-
level variables; those confounders you 
did not measure) assumed = 0 



(inappropriate) application –  
add group-level variables 

� problem: making cross-level inferences 
[drawing inferences regarding factors 
associated with variability in outcome at one 
level based on data collected at another level] 

� e.g., making individual inferences based on 
group-level associations 

Yij = β0 + β1ijX1 + β2ijX2…+ �jGj + εij 

Yij = outcome for individual i in context j   
β1ij= slope for exposure X1 for individual i in context j … 

βj = slope for community variable Gj   ε ij = error term 



� interacting group- and individual-level 
variables will get you close to the right 
answer 

� problem: error structure is multilevel, but 
errors only specified at the individual-level 

� individuals within contexts are correlated 
with each other 

� errors not independent and identically 
distributed 

ln [P(Yij) / (1-P(Yij))] = αi + β1ijX1ij + β2ijX2ij + 
β3jGj + β2ijX2*β3jGj 

(inappropriate) application –  
interact group-level variables 



application – 
multilevel error structure? 

� standard methods generally produce 
unbiased point estimates 
– your betas or ORs will be ~correct  

� standard errors too small  
– confidence intervals will be wrong (too precise) 

� unless you can demonstrate there are no 
correlations between the following: 
– individual-level predictors 
– group-level predictors 
– unobserved characteristics 



application – 
introduction to “shrinkage” 

� trade-off between bias and precision in the 
estimation of parameter � using estimator �*  

� MSE(�*) = E[�*� �]2  
� VAR(�*) = E[�*� E[�*]]2  
� BIAS(�*) = (E[�*] � �) 

� MSE(�*) = VAR(�*) + BIAS(�*)2  



application – 
bias versus variance 



� it is possible for the variance of a 
biased estimator to be sufficiently 
smaller than the variance of an 
unbiased estimator to more than 
compensate for the bias introduced.  

� in this case, the biased estimator is 
closer, on average, to the parameter 
being estimated than is the unbiased 
estimator. 

application – 
bias versus variance 



application –  
greenland 2000 

Greenland 2000; Figure 1       
•  = Rifle 1 shots   
X = Rifle 2 shots   
+ = Rifle 3 shots 

Greenland 2000; Figure 2    
How cluster from Rifle 1  
could be made better by  
pulling toward a point r.  



application –  
to ml models? 

� when you have information for j different 
clusters, you can use the grand mean as the 
“prior” to shrink toward 

� translation: R = sum of context-specific 
estimates or grand mean 

� just need to know weights for each estimate  
� translation: How much do you trust the 

cluster-specific proportions, versus how 
much you trust the grand proportion?   

� answer: depends on N and ICC 



application – 
intraclass correlation coefficient 

� estimates the degree of clustering by 
unit of aggregation 

� icc = between cluster variance / total 
variance* 
– icc = 0 :  no clustering - people within a cluster 

are just the same as people in another cluster 
– icc > 0 : people in same cluster are more 

similar to each other than to people in other 
clusters 

 
*total variance = within cluster + between cluster variance 



application – 
modeling clustered data 

� two main approaches: 
– population average models with robust variance estimators 

� marginal models that account for cross level correlation across 
all units of aggregation  

� not conditional on being in a certain cluster; does not model 
clustering directly 

� provides robust tests, corrected standard errors, corrects for 
heteroskedasticity* 

– ml models 
� random effects models (unit-specific models that condition on 

specific units of aggregation for inference) 
� fixed effects models (area-level coefficients held constant 

across units of aggregation) 
� mixed models (models that combine some fixed and random 

effects; not going into any more detail about mixed models in 
this lecture) 

* heteroskedasticity results from errors not having constant variance  



application – 
population average models 

� developed by Eicker (1963, 1967), Huber (1967) and 
White (1980); often referred to as “huber-white” or 
“sandwich” variance 

� does not specify the population distribution; only 
specifies the marginal distribution 

� examples: generalized estimating equations with 
robust errors 

� pros 
– model response change as function of covariates ‘averaged’ 

over group to group heterogeneity 
� cons 

– do not explicitly account for heterogeneity across higher-
level units / contexts; therefore no examination of group to 
group variation 
 



application – 
population average models 

� Yij = preterm birth (1) versus term birth 
(0) for woman i in tract j 

� Xij = low (1) or high (0) ses for woman i  in 
tract j 

� no locations specified, just averaged over 
all tracts 

� allows you to compare ‘average low’ versus 
‘average high’ ses women 

Pr (Y ij=1 | Xij) = f (Xij �*) note: no conditioning on 
cluster 



application - multilevel models 
random and fixed 

� random effects models 
random intercept        random slope 
 
 
 
random slope and random intercept 

random intercept models: 
context specific mean realized 
from a random distribution 

random slope models: exposure 
effect realized from a random 
distribution 



application – 
random effects model – simplest (1) 

� simplest hierarchical logistic model expresses 
context-level intercepts β0j as function of overall 
intercept �00 and context-specific random 
deviations μj 

�00 distribution mean of random 
coefficients, estimated as weighted 
average of tract intercepts; μj = 
cluster-specific parameter 

ln [P(yi) / (1-P((yi))] = β0j 
Β0j = �00 + μj 



add individual-level or neighborhood-level covariates 
to explain some of the between tracts variance.   
 
for probability of preterm delivery pij = Pr(yij = 1) for  
individuals i in tracts j: 
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application – 
random effects model – next (2) 



� �00 is the mean of the distribution of random 
coefficients, estimated as the weighted average of 
tract intercepts.   

� both the log-odds of outcome in each tract and �00 
(the weighted average of tract-specific log-odds) 
are estimates for the true tract-specific log-odds.  

� an optimal (minimum MSE) estimator for �0j is 
formed by taking the weighted average of these 
two quantities, with intra-class correlations for 
weights 

0 00 01 0 0 00, ~ (0, )j j j jZ N� � � � � �� 	 	

application – 
random effects model – next (2) 



application –  
logistic random intercept models [3] 

replacing the second-level equation into the first  
level equation yields the combined equation: 
 
 
 
 
 
 
these models have random effects only for the 
intercept, but one could also specify models with 
random effects for one or more of the slope terms.  
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note: conditioning 
on cluster 



application –  
logistic random effects output 

. xi: xtlogit single_preterm  AS_stddepriv_8_new i.cat_momage i.cat_momedu, i(c_tract) or nolog 
i.cat_momage      _Icat_momag_0-5     (naturally coded; _Icat_momag_0 omitted) 
i.cat_momedu      _Icat_momed_1-3     (naturally coded; _Icat_momed_1 omitted) 
 
Random-effects logistic regression              Number of obs      =     28158 
Group variable (i): c_tract                     Number of groups   =       105 
 
Random effects u_i ~ Gaussian                   Obs per group: min =        34 
                                                               avg =     268.2 
                                                               max =      1148 
 
                                                Wald chi2(8)       =    104.08 
Log likelihood  = -7825.5801                    Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
single_pre~m |         OR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
AS_stddepr~w |   1.209596   .0436054     5.28   0.000     1.127081    1.298153 
_Icat_moma~1 |   1.017455   .1558981     0.11   0.910     .7535132     1.37385 
_Icat_moma~2 |   .9998798   .1140788    -0.00   0.999      .799525    1.250442 
_Icat_moma~3 |   1.110174   .0762816     1.52   0.128     .9702947    1.270218 
_Icat_moma~4 |   1.028658   .0739753     0.39   0.694     .8934238    1.184363 
_Icat_moma~5 |   1.266427   .0988397     3.03   0.002     1.086793    1.475751 
_Icat_mome~2 |    1.42299   .0845803     5.93   0.000     1.266508    1.598807 
_Icat_mome~3 |   1.317904    .097865     3.72   0.000     1.139398    1.524377 
-------------+---------------------------------------------------------------- 
    /lnsig2u |  -4.466719   .7646109                     -5.965329   -2.968109 
-------------+---------------------------------------------------------------- 
     sigma_u |   .1071678   .0409708                      .0506577    .2267166 
         rho |   .0034789   .0026507                      .0007794    .0153835 
------------------------------------------------------------------------------ 
Likelihood-ratio test of rho=0: chibar2(01) =     2.43 Prob >= chibar2 = 0.060  



application –  
random effects models 

� pros  
– helps explain variance in area or context 

effects 
– allows observation of group to group 

variation and interaction with individual-
level variables 

� cons 
– don’t account for selection bias 
– don’t account for omitted variable bias 



application-  
why partition variance? 

� random-effects models allow you to 
decompose the total variance in individual-
level outcomes into within-group and 
between-group components 

 
� In the ANOVA context, has an explanatory 

interpretation as identifying the mechanism 
as being contextual or compositional 



application –  
linear fixed effect multilevel model 

� β1 = context – level estimate for 
exposure X1 in context 1… 

� context-specific variables not allowed to 
vary; held fixed 

� controls for observed and unobserved / 
unmeasured context variables 

� usually accomplished by creating an 
indicator for each contextual variable 

Yij = β0 + β1X1 + β2X1…+ β286X1 + εij 



application – 
fixed effects models 

� pros  
– controls for neighborhood effects 
– controls for selection bias 
– controls for omitted variable bias 

� cons 
– doesn’t explain variance between contexts 
– can’t identify independent contextual 

effects 
– statistically inefficient 



application – 
linear fixed effects output 

. xi: xtreg term_bwt i.cat_momedu, i(tract) fe 
i.cat_momedu      _Icat_momed_0-2     (naturally coded; _Icat_momed_0 omitted) 
 
Fixed-effects (within) regression               Number of obs      =       968 
Group variable (i): tract                       Number of groups   =       100 
 
R-sq:  within  = 0.0023                         Obs per group: min =         1 
       between = 0.1332                                        avg =       9.7 
       overall = 0.0066                                        max =        39 
 
                                                F(2,866)           =      1.00 
corr(u_i, Xb)  = 0.0953                         Prob > F           =    0.3684 
 
------------------------------------------------------------------------------ 
    term_bwt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
_Icat_mome~1 |  -6.692403   41.73948    -0.16   0.873    -88.61478    75.22997 
_Icat_mome~2 |  -61.08572   46.44495    -1.32   0.189    -152.2435     30.0721 
       _cons |   3425.676   27.98791   122.40   0.000     3370.744    3480.608 
-------------+---------------------------------------------------------------- 
     sigma_u |  219.86417 
     sigma_e |  505.85722 
         rho |  .15889284   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
F test that all u_i=0:     F(99, 866) =     1.04             Prob > F = 0.3692 



application – 
how to decide which model to use 

� depends on what you want to say… 
– if you want to look at risk / odds for the average 

individual with some exposure compared with 
average individual with some other exposure, use 
a population averaged model (e.g., GEE with robust 
estimator) 

– if you want to talk about how changes in context 
specific exposures will change the risk / odds in 
that context, use the unit-specific / random 
effects model 

– if you want to want to consider the effect of 
some variable holding all observed and unobserved 
contextual factors constant, use a context fixed 
effect model 



interpretation –  
unemployment and PTB; 3 models 

  Logistic Logistic (PA) Logistic (RE) 
  OR   95% CI OR   95% CI OR   95% CI 
 
>5% unemployment 1.29 (1.08, 1.55)  1.29 (1.04, 1.61)  1.31 (1.04, 1.64) 
 
Age 25-29 1.31 (1.05, 1.64) 1.31 (1.04, 1.61) 1.31 (1.05, 1.64) 
Age 30-34 1.69 (1.33, 2.15) 1.70 (1.35, 2.10) 1.68 (1.32, 2.14) 
Age 35+ 2.10 (1.60, 2.76) 2.10 (1.60, 2.77) 2.10 (1.60, 2.75) 
 
High school 1.37 (1.13, 1.66) 1.37 (1.10, 1.70) 1.38 (1.14, 1.67) 
< High school 1.74 (1.36, 2.26) 1.74 (1.33, 2.27) 1.76 (1.34, 2.29) 
 
Not married 1.49 (1.23, 1.80) 1.49 (1.25, 1.77) 1.49 (1.23, 1.80) 
      



interpretation –  
logistic model 

� standard logistic model (>5% unemployment 
versus �5% unemployment) 

  OR = 1.29 (95% CI: 1.08, 1.55)  
 
assuming that women are evenly distributed 

across neighborhoods with regard to 
preterm birth, the odds of preterm delivery 
will increase by 29% for a randomly selected 
woman living in a high unemployment tract 
compared with a randomly selected woman 
living in a low unemployment tract 



� population average logistic model (>5% 
unemployment versus �5% unemployment) 

  OR = 1.29 (95% CI: 1.04, 1.61)  
 
the odds of preterm delivery will increase by 

29% for a randomly selected woman (read: 
average woman) in a low unemployment tract 
if she were to be relocated to a high 
unemployment tract 

interpretation – 
population average model 



� random effects logistic model (>5% 
unemployment versus �5% unemployment) 

  OR = 1.31 (95% CI: 1.04, 1.64) 
 
the odds of preterm delivery will increase by 

31% for a randomly selected woman in a 
specific census tract with low unemployment 
if that tract is somehow manipulated to have 
high unemployment 

interpretation – 
random effects logistic model 



� fixed effects logistic model (low personal 
ses versus high personal ses) 
 

OR= 1.29 (95% CI: 1.04, 1.61) 
 
holding all observed and unobserved contextual 

effects fixed, the odds of preterm delivery 
will increase by 29% for a randomly selected 
woman with low individual-level ses compared 
with a randomly selected woman with high 
individual-level ses 

interpretation – 
fixed effects logistic model 



interpretation – 
conclusion 

� standard regression models assume that 
data is not clustered by a higher level 
grouping  

� one can model clustered data by either 
using methods robust to this violation of 
assumptions, or else by modeling this 
clustering directly 

� random effects models estimate 
conditional parameters (i.e., the effect of 
exposure given a particular cluster) 
 



thank you 
 

and 
 

questions? 



fallacies associated with different 
levels of data / inference 

� atomistic fallacy -  drawing inferences regarding 
variability across contexts based on aggregation of 
individual responses 

– a.k.a., individualistic fallacy 
� ecological fallacy – drawing inferences regarding 

variability across individuals based on group-level / 
aggregated data 

� psychologistic fallacy – failure to consider group-
level characteristics in drawing inferences regarding 
causes of individual variability 

� sociologistic fallacy – failure to consider individual-
level characteristics in drawing inferences regarding 
causes of group variability 


